当前位置 : 首页 > 现金网评级

陶哲轩宣布破解埃尔德什差异问题 科学人 果壳网 科技有意思

直觉上看,对有些数列而言,这个问题的答案非常简单——在只有1的数列中,把各项加起来一定能得到任意大的数;对无限数列(-1,1,-1,1,-1,1,...)来说,要找到一个各项之和大于2、而且间隔固定的子数列,取第二位和第四位就行;要找到各项之和大于4的子数列,可以取第二位、第四位、第六位、第八位;无论多大的数,都能在(-1,1,-1,1,-1,1)中找到加起来等于这个数的子数列。但埃尔德什的猜想是,无论这些正负1怎么排,这个结论都成立:给出一个任意大的常数,就能找到这样的数列。这到底是什么意思呢?假设你和你的朋友玩一个抛硬币游戏。掷出正面,你往左走一步。掷出反面,你往右走一步。你知道他在硬币上做了手脚,出来正面还是反面,随心所欲他说了算。但你也有杀手锏:你可以忽略某些硬币的结果——只不过不能瞎忽略,而是有规矩:每过固定数量的硬币就有一个算数,剩下的全不算。具体隔几个,你在结束的时候说了算。埃尔德什猜想的意义在于,虽然你最后往左还是往右你说了不算,但是你想离出发点多远,就能有多远。陶哲轩的证明说明了埃尔德什的猜想是对的,但他并没有给出计算这个数值的方法(也就是说,具体怎么挑还不知道,但这个杀手锏是存在的)。虽然他的证明还没有经过严格的同行评议,但数学家们对他的结果很有信心。“我绝对相信他的结果,”以色列希伯来大学的数学家吉尔·卡莱(Gil Kalai)这样说道,但他随后补充道评议可能需要花上一些时间。这次合作在2012年告一段落,但数学家们证明了只要能证明埃尔德什猜想对一类数列成立,就能推广到普遍情况。这种数列是这样的:在质数项,数值是随机的,但其他项的数值是它的质数因子项上的数值的积。比如说,第十五项的数值是第三项和第五项的积。

栏目列表

广告位